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ABSTRACT 

By the use of basic techniques which have been devel- 
oped for treating linear filters in network theory, optimum 
continuous one-dimensional and semi-discrete two-dimensional 
post-filters for a line scanning image system are derived based 
on the mean square error criterion. Explicit formulas in terms 
of the scanning system parameters have been developed for the 
calculations of the minimum mean square errors when either 
continuous one-dimensional or semi-discrete two-dimensional 
post-filtering is performed. Utilizing these results, the 
relative advantage of the two-dimensional semi-discrete post- 
filtering over the continuous one-dimensional post-filtering 
is obtained. This is shown by an illustrative example. 
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I. INTRODUCTION 

In Reference [l] , mathematical relationships of 
scanning are derived for the two-dimensional semi-discrete 

models. In this memorandum we utilize these results as a tool 

for the determination of the optimum post-filters shown in 

Figure 1 when the mean square error criterion is adopted. Since 

the analysis of the line scanning image system in the spatial 

frequency domain is much simpler than the analysis in the spatial 

domain, optimization will be performed in terms of spatial trans- 

fer functions. 

11. OPTIMIZATION OF TWO-DIMENSIONAL SEMI-DISCRETE POST-FILTERS 

The model given in Figure 1 enables one to evaluate 

system performance and to employ optimum post-filtering techniques 

as stated in Reference [l]. To derive the optimum two-dimensional 

post-filters in the mean square sense, first express the error in 

terms of semi-discrete signals, 
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where t h e  v a r i a b l e s  are d e f i n e d  i n  F i g u r e  1. 

Semi-Discrete  Noise 

ii (x ,mAy)  

1 Scanning 
1 System 
I 

P o s t - F i l t e r  

FIGURE 1 - MODEL FOR PERFORMANCE EVALUATION AND 
POST-FILTERING 

The ensemble au tocor re l a t ion  f u n c t i o n  f o r  a s e m i - d i s c r e t e  

s t a t i o n a r y  s i g n a l  i s  d e f i n e d  as 

From ( 2 )  and ( l ) ,  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  of  t h e  error s i g n a l  

i s  
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Expanding (3 )  and assuming t h e  s i g n a l  and n o i s e  a r e  uncor re l a t ed  

and have zero mean, t h a t  i s  

w e  o b t a i n  

A = E [ ( $  ;a ) (3 ) ]  + E[(h;a4)+(n;a4)] - E [ f l +  ( 3  ;a ) 3  
E 3 4 +  3 4 

Applying (2) and not ing  t h a t  (see Reference [ l ] )  

*a *a - - 
Afl 3 3- 

- - -  *a *a - 
Af3 - Afl 3 3- 

- 
cf If 3+ - Afl*a3 

(5 becomes 

- -  I - -  
3 1+ 3 cf If 3+ *a4 + Afl 

A = (if +in,;a4;a4- - tf f *a4, - 
E ( 7 )  

o r  i n  t h e  s p a t i a l  frequency domain, w e  aga in  apply t h e  r e s u l t s  of 

Reference [ 1 3  
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- - 
sf l+f 3 

- - 
Sflf3+ 

to (7) and obtain 

s = (Sf +Sn) [A4] 2 - 
3 E 

Equation (9) can be rewritten 

s x  
fl 

fl 

s A  
fl 

fl 

S A  

. . . . . .  
S A  

- 
Sf l+f 3 A 4  

as 

... - A4 + 5 
sf If 3+ ,l 

It is evident from Figure 1 that the variation in A4 does not 
change the functions of sf3, Sn, gfl+f3 and 6 

optimum semi-discrete two-dimensional post-filter transfer func- 

tion A 

. Thus, the 
fl 

can be readily obtained from (10) as 
4 (opt) 

The mean square value of a semi-discrete signal is derived in 

Reference [I] as 
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1 m -  
2AY ~ 

E[f21 = Af(O,O) = S (w ,w )dw dwx 
1 f X Y  Y 

where Ay is the interval between samples in the y coordinate. 

Hence, from (12) and (lo), the minimum mean square error after 

optimum post-filtering is 

From (8), the optimum semi-discrete two-dimensional post-filter 

transfer function A 

error after optimum post-filtering E[i21min of (13) can be 

rewritten in terms of the parameters of the scanning system 

of (11) and the minimum mean square 
4 (opt) 

respectively as 

and 

1 
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111. OPTIMIZATION OF ONE-DIMENSIONAL POST-FILTER 

In many practical situations, the post-filter may be 

only realizable as a one-dimensional filter. For these cases, 

it is necessary to derive the optimum one-dimensional post- 

filter and the corresponding minimum mean square error when the 

input signal is two-dimensional. It should be noted that (10) 

holds for either one or two-dimensional post-filters. However, 

it is evident that no one-dimensional filter of the form of 

5, (x ,mAy) 

where ai(x) is the contin 

if m=O 

ous one-dimensional impulse response 

of the post-filter, can make the first term of (10) vanish since 

the other parameters involved are inherently two-dimensional. 

Thus, the minimum mean square error after optimum one-dimensional 

post-filtering will be greater than the minimum mean square error 

if optimum two-dimensional post-filtering is performed. This 

will be illustrated below and in Section IV. 

By noting that the procedure of obtaining the optimum 

post-filter involves differentiaticn cf the mean square error of 

(10) with respect to the post-filter A,, the last two terms on 

the right-hand side of (10) vanish and can be ignored. Thus, to 

minimize the mean square error with one-dimensional post-filtering, 

we rewrite the first term on the right-hand side of (10) as 
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It should be noted that (17) is in terms of semi-discrete spectra. 

To write (17) in terms of one-dimensional spectra, we use the 

relationships between A (w ,w ) and Ai(wx), and between the semi- 

discrete and one-dimensional spectra, which are derived in the 
4 X Y  

Appendix as 

and 

respectively. Thus, the one-dimensional equivalent of (17) is 

1 

+Sn)dw - 
Y 

1 - I C  i 2  
(20) 

or rearranging we have 
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S;px) = 

+ I Sfl+f3 I 
dw 
Y 

1 - 

I 

2 

The optimum one-dimensional post-filter can be obtained by differ- 

entiating (21) with respect to A i  and setting the resulting equation 

to zero, 

From (8) , (22) can be rewritten in terms of the parameters of the 

1 
scanning system as 

I A 
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The mean square value of a one-dimensional signal is 

defined as 

W 

E[(f')2] = A;(O) = S;(wx)dwx . 
-m 

Hence, from (10) , (21) and (22) , the minimum mean square error 
with one-dimensional post-filtering is obtained 

m 

+ I  
-m 

1 - 
2AY I 
1 

dw dwx (Sf +6,) Y 
3 

or 
m -s 

-m 

- 2 1 
2AY - 

dw 
-- i sfl+f3 
2 Ay 
1 dwX 

From ( 8 )  , (26) can be expressed in terms of the parameters of the 
scanning system as 



-I 
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dwX 

The advantage of two-dimensional semi-discrete processing 

over one-dimensional continuous processing can be determined by sub- 

tracting (15) from (271, 

m -  1 I A  (w ,w 16 !Wx'W ! I  2 
3 X Y f l  Y I  

- I  I 2 -  1 s (w ,w 1 IA (w tw 1 I + Sn(WxtW 1 
dw dwx . 2AY 

2AY 
Y 

f x y  3 x y  Y -m -- 

IV. EXAMPLE 

The model given in Figure 1 enables one to evaluate 

system performance after post-filtering. To compare the relative 
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fl (X,Y) 
m 

Input 

advantage of two-dimensional semi-discrete post-filtering over 

one-dimensional continuous post-filtering, we should first find 

the optimum one-dimensional and two-dimensional semi-discrete 

post-filters for the model given in Figure 2. Then, to simplify 

calculations, the minimum mean square errors for both techniques 

are determined and compared for the noiseless system. 

Aperture Detector Filter x Axis X 
x scan sampler Recon- 
y sample struction 

- - 
fl f6 

2 n3 n 
Background Aperture Detector 
noise noise noise 

"1 

s(Ay) 

n4 
Quantization 

noise 

. . a5(x,mAy) 

FIGURE 2 - MODEL OF A LINE SCANNING SYSTEM 
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The correlation spectra of the output signal of the 

reconstruction filter a,(x,y), shown in Figure 2, have been 

determined in Reference [l] as 

= (Sf +s ) I A1A2A3A4 I + sn2 IA2A3A4 2 + Sn3 IA3A4 I + sn4 1A412 2 
Sf5 1 nl 

and 

Associating g5 and a5 of Figure 2 with signal f 
Figure 1, respectively, we obtain the optimum two-dimensional 

and a4 of 3 

semi-discrete post-filter by substituting (29) and (31) into (11) 

Sf,A1A2A3A4 

The corresponding minimum mean square error is obtained from (13), 

(29) and (30) as 

Assuming the model of Figure 2 is noiseless, then from (29), the 

optimum two-dimensional semi-discrete post-filter reduces to 



- 13 - 

- - - -  
Sf ,A1A2A3A4 

A5 (WX twy) opt A A A A  l 2  A1A2A3A4 
Sfl1 1 2 3 4 

- 1 - - - (34) 

and the corresponding minimum mean square error after optimum post- 

filter for the noiseless system is 

The optimum one-dimensional post-filter can be derived 

by associating Figures 1 and 2 and by substituting (29) and (31) 

into (23) 1 

J -- 
2AY 

and the corresponding minimum mean square error is obtained from 

(26), (29) and (31) as 

1 m -  

-i - 2Av 
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2ay- - - - -  - - - -  
I 1 'f p1A2A3A4dWy -- 

Assuming the model of Figure 2 again noiseless, then from (29), 

the optimum one-dimensional post-filter reduces to 
1 

1 Sf P,A2A3A4dwY 
1 

1 

- 
2Ay, - - - - 

-- - 2 Ay - 
- 
2AY- 

2AY 

Ay 1 Sfll A 1 A 2 A 3 A 4 I2dw y 
1 -- 

and the corresponding minimum mean square error after optimum post- 

filter for the noiseless system is 

Thus, by comparing the minimum mean square errors of (35) and (39), 

it is seen that the semi-discrete post-filtering technique has the 

advantage over the one-dimensional continuous post-filtering 

technique. 

fu 
1031-SYL-sje S. Y. Lee 

Attachment 
Appendix 
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APPENDIX 

THE RELATIONSHIPS BETWEEN THE SEMI-DISCRETE 
AND ONE-DIMENSIONAL PROCESS 

A one-dimensional filter can be defined in terms of 

the semi-discrete two-dimensional filter as follows: 

a'(x) if m=O 

if m#O 

a(x,mAy) 5 

where a'(x) is the continuous one-dimensional impulse system 

response function with the Fourier spectrum A'(wx) defined as 

m -j2nw x 
A'(W~) = a'(x)e dx 

-03 

(A-2 1 

and a(x,mAy) is the semi-discrete two-dimensional impulse 

system response function whose Fourier spectrum is defined in 

Reference [l] as 
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Hence, the relationship between the semi-discrete spectrum 

A(w ,w ) and the continuous one-dimensional spectrum A'(wx) 

is easily obtained from (A-2) and (A-3), 
X Y  

A(wx,w ) = Ay A'(wx) . 
Y 

The spatial autocorrelation function of a one- 

dimensional signal is defined as 

A;(x) = E[f'(x+a)f'(a)] 

and its Fourier transform pair is 

m - j ~ITW,X 

m j 2.rrwxx 

s;(wx) = I dx 

A,!.(x) = 1 S;(wx)e dwx . 
-m 

-00 

(A-4 1 

(24-5) 

(A-6 1 

The spatial autocorrelation function of a semi-discrete two- 

dimensional signal is defined in Reference [ll as 

Af (x,mAy) = E[$(x+a,mAy+nAy)2(a,nAy)l (A-7 1 

and its Fourier transform pair is 

m m  

1 (A-8) 
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Thus, the relationship between the semi-discrete and the 

one-dimensional continuous correlation function is obtained 

directly from (A-5)  and (A-7) as 

Furthermore, it should be noted that from (A-8) 

Therefore, by comparing (A-10) with (A-6), the relationship 

between the one-dimensional and semi-discrete two-dimensional 

spectra is determined as 

1 
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